Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On a conditional inequality in Kolmogorov complexity and its applications in communication complexity (1905.00164v1)

Published 1 May 2019 in cs.CC, cs.IT, and math.IT

Abstract: Romashchenko and Zimand~\cite{rom-zim:c:mutualinfo} have shown that if we partition the set of pairs $(x,y)$ of $n$-bit strings into combinatorial rectangles, then $I(x:y) \geq I(x:y \mid t(x,y)) - O(\log n)$, where $I$ denotes mutual information in the Kolmogorov complexity sense, and $t(x,y)$ is the rectangle containing $(x,y)$. We observe that this inequality can be extended to coverings with rectangles which may overlap. The new inequality essentially states that in case of a covering with combinatorial rectangles, $I(x:y) \geq I(x:y \mid t(x,y)) - \log \rho - O(\log n)$, where $t(x,y)$ is any rectangle containing $(x,y)$ and $\rho$ is the thickness of the covering, which is the maximum number of rectangles that overlap. We discuss applications to communication complexity of protocols that are nondeterministic, or randomized, or Arthur-Merlin, and also to the information complexity of interactive protocols.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube