Papers
Topics
Authors
Recent
2000 character limit reached

On Scalable and Efficient Computation of Large Scale Optimal Transport (1905.00158v3)

Published 1 May 2019 in cs.LG and stat.ML

Abstract: Optimal Transport (OT) naturally arises in many machine learning applications, yet the heavy computational burden limits its wide-spread uses. To address the scalability issue, we propose an implicit generative learning-based framework called SPOT (Scalable Push-forward of Optimal Transport). Specifically, we approximate the optimal transport plan by a pushforward of a reference distribution, and cast the optimal transport problem into a minimax problem. We then can solve OT problems efficiently using primal dual stochastic gradient-type algorithms. We also show that we can recover the density of the optimal transport plan using neural ordinary differential equations. Numerical experiments on both synthetic and real datasets illustrate that SPOT is robust and has favorable convergence behavior. SPOT also allows us to efficiently sample from the optimal transport plan, which benefits downstream applications such as domain adaptation.

Citations (42)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.