Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Effective and Efficient Indexing in Cross-Modal Hashing-Based Datasets (1904.13325v2)

Published 30 Apr 2019 in cs.IR and cs.MM

Abstract: To overcome the barrier of storage and computation, the hashing technique has been widely used for nearest neighbor search in multimedia retrieval applications recently. Particularly, cross-modal retrieval that searches across different modalities becomes an active but challenging problem. Although dozens of cross-modal hashing algorithms are proposed to yield compact binary codes, the exhaustive search is impractical for the real-time purpose, and Hamming distance computation suffers inaccurate results. In this paper, we propose a novel search method that utilizes a probability-based index scheme over binary hash codes in cross-modal retrieval. The proposed hash code indexing scheme exploits a few binary bits of the hash code as the index code. We construct an inverted index table based on index codes and train a neural network to improve the indexing accuracy and efficiency. Experiments are performed on two benchmark datasets for retrieval across image and text modalities, where hash codes are generated by three cross-modal hashing methods. Results show the proposed method effectively boost the performance on these hash methods.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.