Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 25 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 134 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

GaborNet: Gabor filters with learnable parameters in deep convolutional neural networks (1904.13204v1)

Published 30 Apr 2019 in cs.CV, cs.LG, and eess.IV

Abstract: The article describes a system for image recognition using deep convolutional neural networks. Modified network architecture is proposed that focuses on improving convergence and reducing training complexity. The filters in the first layer of the network are constrained to fit the Gabor function. The parameters of Gabor functions are learnable and are updated by standard backpropagation techniques. The system was implemented on Python, tested on several datasets and outperformed the common convolutional networks.

Citations (61)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.