Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Detecting Adversarial Examples through Nonlinear Dimensionality Reduction (1904.13094v2)

Published 30 Apr 2019 in cs.LG, cs.CR, and stat.ML

Abstract: Deep neural networks are vulnerable to adversarial examples, i.e., carefully-perturbed inputs aimed to mislead classification. This work proposes a detection method based on combining non-linear dimensionality reduction and density estimation techniques. Our empirical findings show that the proposed approach is able to effectively detect adversarial examples crafted by non-adaptive attackers, i.e., not specifically tuned to bypass the detection method. Given our promising results, we plan to extend our analysis to adaptive attackers in future work.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.