Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Estimating the Frequency of a Clustered Signal (1904.13043v1)

Published 30 Apr 2019 in cs.DS

Abstract: We consider the problem of locating a signal whose frequencies are "off grid" and clustered in a narrow band. Given noisy sample access to a function $g(t)$ with Fourier spectrum in a narrow range $[f_0 - \Delta, f_0 + \Delta]$, how accurately is it possible to identify $f_0$? We present generic conditions on $g$ that allow for efficient, accurate estimates of the frequency. We then show bounds on these conditions for $k$-Fourier-sparse signals that imply recovery of $f_0$ to within $\Delta + \tilde{O}(k3)$ from samples on $[-1, 1]$. This improves upon the best previous bound of $O\big( \Delta + \tilde{O}(k5) \big){1.5}$. We also show that no algorithm can do better than $\Delta + \tilde{O}(k2)$. In the process we provide a new $\tilde{O}(k3)$ bound on the ratio between the maximum and average value of continuous $k$-Fourier-sparse signals, which has independent application.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)