Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A Deep Q-Learning Method for Downlink Power Allocation in Multi-Cell Networks (1904.13032v1)

Published 30 Apr 2019 in cs.NI, cs.LG, eess.SP, and stat.ML

Abstract: Optimal resource allocation is a fundamental challenge for dense and heterogeneous wireless networks with massive wireless connections. Because of the non-convex nature of the optimization problem, it is computationally demanding to obtain the optimal resource allocation. Recently, deep reinforcement learning (DRL) has emerged as a promising technique in solving non-convex optimization problems. Unlike deep learning (DL), DRL does not require any optimal/ near-optimal training dataset which is either unavailable or computationally expensive in generating synthetic data. In this paper, we propose a novel centralized DRL based downlink power allocation scheme for a multi-cell system intending to maximize the total network throughput. Specifically, we apply a deep Q-learning (DQL) approach to achieve near-optimal power allocation policy. For benchmarking the proposed approach, we use a Genetic Algorithm (GA) to obtain near-optimal power allocation solution. Simulation results show that the proposed DRL-based power allocation scheme performs better compared to the conventional power allocation schemes in a multi-cell scenario.

Citations (33)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.