Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Dynamic Environment Prediction in Urban Scenes using Recurrent Representation Learning (1904.12374v2)

Published 28 Apr 2019 in cs.CV, cs.LG, and cs.RO

Abstract: A key challenge for autonomous driving is safe trajectory planning in cluttered, urban environments with dynamic obstacles, such as pedestrians, bicyclists, and other vehicles. A reliable prediction of the future environment, including the behavior of dynamic agents, would allow planning algorithms to proactively generate a trajectory in response to a rapidly changing environment. We present a novel framework that predicts the future occupancy state of the local environment surrounding an autonomous agent by learning a motion model from occupancy grid data using a neural network. We take advantage of the temporal structure of the grid data by utilizing a convolutional long-short term memory network in the form of the PredNet architecture. This method is validated on the KITTI dataset and demonstrates higher accuracy and better predictive power than baseline methods.

Citations (33)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.