Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

An approach to image denoising using manifold approximation without clean images (1904.12323v1)

Published 28 Apr 2019 in cs.CV and eess.IV

Abstract: Image restoration has been an extensively researched topic in numerous fields. With the advent of deep learning, a lot of the current algorithms were replaced by algorithms that are more flexible and robust. Deep networks have demonstrated impressive performance in a variety of tasks like blind denoising, image enhancement, deblurring, super-resolution, inpainting, among others. Most of these learning-based algorithms use a large amount of clean data during the training process. However, in certain applications in medical image processing, one may not have access to a large amount of clean data. In this paper, we propose a method for denoising that attempts to learn the denoising process by pushing the noisy data close to the clean data manifold, using only noisy images during training. Furthermore, we use perceptual loss terms and an iterative refinement step to further refine the clean images without losing important features.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)