Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 89 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Block Sparsity Based Estimator for mmWave Massive MIMO Channels with Beam Squint (1904.12272v1)

Published 28 Apr 2019 in eess.SP, cs.IT, and math.IT

Abstract: Multiple-input multiple-output (MIMO) millimeter wave (mmWave) communication is a key technology for next generation wireless networks. One of the consequences of utilizing a large number of antennas with an increased bandwidth is that array steering vectors vary among different subcarriers. Due to this effect, known as beam squint, the conventional channel model is no longer applicable for mmWave massive MIMO systems. In this paper, we study channel estimation under the resulting non-standard model. To that aim, we first analyze the beam squint effect from an array signal processing perspective, resulting in a model which sheds light on the angle-delay sparsity of mmWave transmission. We next design a compressive sensing based channel estimation algorithm which utilizes the shift-invariant block-sparsity of this channel model. The proposed algorithm jointly computes the off-grid angles, the off-grid delays, and the complex gains of the multi-path channel. We show that the newly proposed scheme reflects the mmWave channel more accurately and results in improved performance compared to traditional approaches. We then demonstrate how this approach can be applied to recover both the uplink as well as the downlink channel in frequency division duplex (FDD) systems, by exploiting the angle-delay reciprocity of mmWave channels.

Citations (66)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube