Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Soft Marginal TransE for Scholarly Knowledge Graph Completion (1904.12211v1)

Published 27 Apr 2019 in cs.AI, cs.IR, and cs.LG

Abstract: Knowledge graphs (KGs), i.e. representation of information as a semantic graph, provide a significant test bed for many tasks including question answering, recommendation, and link prediction. Various amount of scholarly metadata have been made vailable as knowledge graphs from the diversity of data providers and agents. However, these high-quantities of data remain far from quality criteria in terms of completeness while growing at a rapid pace. Most of the attempts in completing such KGs are following traditional data digitization, harvesting and collaborative curation approaches. Whereas, advanced AI-related approaches such as embedding models - specifically designed for such tasks - are usually evaluated for standard benchmarks such as Freebase and Wordnet. The tailored nature of such datasets prevents those approaches to shed the lights on more accurate discoveries. Application of such models on domain-specific KGs takes advantage of enriched meta-data and provides accurate results where the underlying domain can enormously benefit. In this work, the TransE embedding model is reconciled for a specific link prediction task on scholarly metadata. The results show a significant shift in the accuracy and performance evaluation of the model on a dataset with scholarly metadata. The newly proposed version of TransE obtains 99.9% for link prediction task while original TransE gets 95%. In terms of accuracy and Hit@10, TransE outperforms other embedding models such as ComplEx, TransH and TransR experimented over scholarly knowledge graphs

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.