Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Polynomial Approximation of Anisotropic Analytic Functions of Several Variables (1904.12105v2)

Published 27 Apr 2019 in math.NA and cs.NA

Abstract: Motivated by numerical methods for solving parametric partial differential equations, this paper studies the approximation of multivariate analytic functions by algebraic polynomials. We introduce various anisotropic model classes based on Taylor expansions, and study their approximation by finite dimensional polynomial spaces $\cal{P}{\Lambda}$ described by lower sets $\Lambda$. Given a budget $n$ for the dimension of $\cal{P}{\Lambda}$, we prove that certain lower sets $\Lambda_n$, with cardinality $n$, provide a certifiable approximation error that is in a certain sense optimal, and that these lower sets have a simple definition in terms of simplices. Our main goal is to obtain approximation results when the number of variables $d$ is large and even infinite, and so we concentrate almost exclusively on the case $d=\infty$. We also emphasize obtaining results which hold for the full range $n\ge 1$, rather than asymptotic results that only hold for $n$ sufficiently large. In applications, one typically wants $n$ small to comply with computational budgets.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.