Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Graph Neural Reasoning for 2-Quantified Boolean Formula Solvers (1904.12084v1)

Published 27 Apr 2019 in cs.AI, cs.LG, and cs.LO

Abstract: In this paper, we investigate the feasibility of learning GNN (Graph Neural Network) based solvers and GNN-based heuristics for specified QBF (Quantified Boolean Formula) problems. We design and evaluate several GNN architectures for 2QBF formulae, and conjecture that GNN has limitations in learning 2QBF solvers. Then we show how to learn a heuristic CEGAR 2QBF solver. We further explore generalizing GNN-based heuristics to larger unseen instances, and uncover some interesting challenges. In summary, this paper provides a comprehensive surveying view of applying GNN-embeddings to specified QBF solvers, and aims to offer guidance in applying ML to more complicated symbolic reasoning problems.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.