Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Every planar graph with $Δ\geqslant 8$ is totally $(Δ+2)$-choosable (1904.12060v4)

Published 26 Apr 2019 in cs.DM and math.CO

Abstract: Total coloring is a variant of edge coloring where both vertices and edges are to be colored. A graph is totally $k$-choosable if for any list assignment of $k$ colors to each vertex and each edge, we can extract a proper total coloring. In this setting, a graph of maximum degree $\Delta$ needs at least $\Delta+1$ colors. In the planar case, Borodin proved in 1989 that $\Delta+2$ colors suffice when $\Delta$ is at least 9. We show that this bound also holds when $\Delta$ is $8$.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.