Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

Truly Optimal Euclidean Spanners (1904.12042v3)

Published 26 Apr 2019 in cs.CG and cs.DS

Abstract: Euclidean spanners are important geometric structures, having found numerous applications over the years. Cornerstone results in this area from the late 80s and early 90s state that for any $d$-dimensional $n$-point Euclidean space, there exists a $(1+\epsilon)$-spanner with $nO(\epsilon{-d+1})$ edges and lightness $O(\epsilon{-2d})$. Surprisingly, the fundamental question of whether or not these dependencies on $\epsilon$ and $d$ for small $d$ can be improved has remained elusive, even for $d = 2$. This question naturally arises in any application of Euclidean spanners where precision is a necessity. The state-of-the-art bounds $nO(\epsilon{-d+1})$ and $O(\epsilon{-2d})$ on the size and lightness of spanners are realized by the {\em greedy} spanner. In 2016, Filtser and Solomon proved that, in low dimensional spaces, the greedy spanner is near-optimal. The question of whether the greedy spanner is truly optimal remained open to date. The contribution of this paper is two-fold. We resolve these longstanding questions by nailing down the exact dependencies on $\epsilon$ and $d$ and showing that the greedy spanner is truly optimal. Specifically, for any $d= O(1), \epsilon = \Omega({n}{-\frac{1}{d-1}})$: - We show that any $(1+\epsilon)$-spanner must have $n \Omega(\epsilon{-d+1})$ edges, implying that the greedy (and other) spanners achieve the optimal size. - We show that any $(1+\epsilon)$-spanner must have lightness $\Omega(\epsilon{-d})$, and then improve the upper bound on the lightness of the greedy spanner from $O(\epsilon{-2d})$ to $O(\epsilon{-d})$. We then complement our negative result for the size of spanners with a rather counterintuitive positive result: Steiner points lead to a quadratic improvement in the size of spanners! Our bound for the size of Steiner spanners is tight as well (up to lower-order terms).

Citations (44)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.