Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 30 tok/s Pro
2000 character limit reached

Contextualized Word Embeddings Enhanced Event Temporal Relation Extraction for Story Understanding (1904.11942v1)

Published 26 Apr 2019 in cs.CL

Abstract: Learning causal and temporal relationships between events is an important step towards deeper story and commonsense understanding. Though there are abundant datasets annotated with event relations for story comprehension, many have no empirical results associated with them. In this work, we establish strong baselines for event temporal relation extraction on two under-explored story narrative datasets: Richer Event Description (RED) and Causal and Temporal Relation Scheme (CaTeRS). To the best of our knowledge, these are the first results reported on these two datasets. We demonstrate that neural network-based models can outperform some strong traditional linguistic feature-based models. We also conduct comparative studies to show the contribution of adopting contextualized word embeddings (BERT) for event temporal relation extraction from stories. Detailed analyses are offered to better understand the results.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.