Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Feature-based factorized Bilinear Similarity Model for Cold-Start Top-n Item Recommendation (1904.11799v1)

Published 22 Apr 2019 in cs.IR, cs.LG, and stat.ML

Abstract: Recommending new items to existing users has remained a challenging problem due to absence of user's past preferences for these items. The user personalized non-collaborative methods based on item features can be used to address this item cold-start problem. These methods rely on similarities between the target item and user's previous preferred items. While computing similarities based on item features, these methods overlook the interactions among the features of the items and consider them independently. Modeling interactions among features can be helpful as some features, when considered together, provide a stronger signal on the relevance of an item when compared to case where features are considered independently. To address this important issue, in this work we introduce the Feature-based factorized Bilinear Similarity Model (FBSM), which learns factorized bilinear similarity model for TOP-n recommendation of new items, given the information about items preferred by users in past as well as the features of these items. We carry out extensive empirical evaluations on benchmark datasets, and we find that the proposed FBSM approach improves upon traditional non-collaborative methods in terms of recommendation performance. Moreover, the proposed approach also learns insightful interactions among item features from data, which lead to deep understanding on how these interactions contribute to personalized recommendation.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube