Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Robust Metric Learning based on the Rescaled Hinge Loss (1904.11711v2)

Published 26 Apr 2019 in cs.LG and stat.ML

Abstract: Distance/Similarity learning is a fundamental problem in machine learning. For example, kNN classifier or clustering methods are based on a distance/similarity measure. Metric learning algorithms enhance the efficiency of these methods by learning an optimal distance function from data. Most metric learning methods need training information in the form of pair or triplet sets. Nowadays, this training information often is obtained from the Internet via crowdsourcing methods. Therefore, this information may contain label noise or outliers leading to the poor performance of the learned metric. It is even possible that the learned metric functions perform worse than the general metrics such as Euclidean distance. To address this challenge, this paper presents a new robust metric learning method based on the Rescaled Hinge loss. This loss function is a general case of the popular Hinge loss and initially introduced in (Xu et al. 2017) to develop a new robust SVM algorithm. In this paper, we formulate the metric learning problem using the Rescaled Hinge loss function and then develop an efficient algorithm based on HQ (Half-Quadratic) to solve the problem. Experimental results on a variety of both real and synthetic datasets confirm that our new robust algorithm considerably outperforms state-of-the-art metric learning methods in the presence of label noise and outliers.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.