Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Adaptive Regret of Convex and Smooth Functions (1904.11681v3)

Published 26 Apr 2019 in cs.LG and stat.ML

Abstract: We investigate online convex optimization in changing environments, and choose the adaptive regret as the performance measure. The goal is to achieve a small regret over every interval so that the comparator is allowed to change over time. Different from previous works that only utilize the convexity condition, this paper further exploits smoothness to improve the adaptive regret. To this end, we develop novel adaptive algorithms for convex and smooth functions, and establish problem-dependent regret bounds over any interval. Our regret bounds are comparable to existing results in the worst case, and become much tighter when the comparator has a small loss.

Citations (45)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube