Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Zap Q-Learning for Optimal Stopping Time Problems (1904.11538v3)

Published 25 Apr 2019 in cs.SY and cs.LG

Abstract: The objective in this paper is to obtain fast converging reinforcement learning algorithms to approximate solutions to the problem of discounted cost optimal stopping in an irreducible, uniformly ergodic Markov chain, evolving on a compact subset of $\mathbb{R}n$. We build on the dynamic programming approach taken by Tsitsikilis and Van Roy, wherein they propose a Q-learning algorithm to estimate the optimal state-action value function, which then defines an optimal stopping rule. We provide insights as to why the convergence rate of this algorithm can be slow, and propose a fast-converging alternative, the "Zap-Q-learning" algorithm, designed to achieve optimal rate of convergence. For the first time, we prove the convergence of the Zap-Q-learning algorithm under the assumption of linear function approximation setting. We use ODE analysis for the proof, and the optimal asymptotic variance property of the algorithm is reflected via fast convergence in a finance example.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.