Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Threshold shift method for reliability-based design optimization (1904.11424v1)

Published 25 Apr 2019 in cs.NA

Abstract: We present a novel approach, referred to as the 'threshold shift method' (TSM), for reliability based design optimization (RBDO). The proposed approach is similar in spirit with the sequential optimization and reliability analysis (SORA) method where the RBDO problem is decoupled into an optimization and a reliability analysis problem. However, unlike SORA that utilizes shift-vector to shift the design variables within a constraint (independently), in TSM we propose to shift the threshold of the constraints. We argue that modifying a constraint, either by shifting the design variables (SORA) or by shifting the threshold of the constraints (TSM), influences the other constraints of the system. Therefore, we propose to determine the thresholds for all the constraints by solving a single optimization problem. Additionally, the proposed TSM is equipped with an active-constraint determination scheme. To make the method scalable, a practical algorithm for TSM that utilizes two surrogate models is proposed. Unlike the conventional RBDO methods, the proposed approach has the ability to handle highly non-linear probabilistic constraints. The performance of the proposed approach is examined on six benchmark problems selected from the literature. The proposed approach yields excellent results outperforming other popular methods in literature. As for the computational efficiency, the proposed approach is found to be highly efficient, indicating it's future application to other real-life problems.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube