Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Communication trade-offs for synchronized distributed SGD with large step size (1904.11325v1)

Published 25 Apr 2019 in cs.LG, math.OC, and stat.ML

Abstract: Synchronous mini-batch SGD is state-of-the-art for large-scale distributed machine learning. However, in practice, its convergence is bottlenecked by slow communication rounds between worker nodes. A natural solution to reduce communication is to use the \emph{`local-SGD'} model in which the workers train their model independently and synchronize every once in a while. This algorithm improves the computation-communication trade-off but its convergence is not understood very well. We propose a non-asymptotic error analysis, which enables comparison to \emph{one-shot averaging} i.e., a single communication round among independent workers, and \emph{mini-batch averaging} i.e., communicating at every step. We also provide adaptive lower bounds on the communication frequency for large step-sizes ($ t{-\alpha} $, $ \alpha\in (1/2 , 1 ) $) and show that \emph{Local-SGD} reduces communication by a factor of $O\Big(\frac{\sqrt{T}}{P{3/2}}\Big)$, with $T$ the total number of gradients and $P$ machines.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.