Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Web Stereo Video Supervision for Depth Prediction from Dynamic Scenes (1904.11112v1)

Published 25 Apr 2019 in cs.CV

Abstract: We present a fully data-driven method to compute depth from diverse monocular video sequences that contain large amounts of non-rigid objects, e.g., people. In order to learn reconstruction cues for non-rigid scenes, we introduce a new dataset consisting of stereo videos scraped in-the-wild. This dataset has a wide variety of scene types, and features large amounts of nonrigid objects, especially people. From this, we compute disparity maps to be used as supervision to train our approach. We propose a loss function that allows us to generate a depth prediction even with unknown camera intrinsics and stereo baselines in the dataset. We validate the use of large amounts of Internet video by evaluating our method on existing video datasets with depth supervision, including SINTEL, and KITTI, and show that our approach generalizes better to natural scenes.

Citations (104)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.