Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

The iterative convolution-thresholding method (ICTM) for image segmentation (1904.10917v1)

Published 24 Apr 2019 in cs.CV

Abstract: In this paper, we propose a novel iterative convolution-thresholding method (ICTM) that is applicable to a range of variational models for image segmentation. A variational model usually minimizes an energy functional consisting of a fidelity term and a regularization term. In the ICTM, the interface between two different segment domains is implicitly represented by their characteristic functions. The fidelity term is then usually written as a linear functional of the characteristic functions and the regularized term is approximated by a functional of characteristic functions in terms of heat kernel convolution. This allows us to design an iterative convolution-thresholding method to minimize the approximate energy. The method is simple, efficient and enjoys the energy-decaying property. Numerical experiments show that the method is easy to implement, robust and applicable to various image segmentation models.

Citations (59)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.