Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Machine learning for long-distance quantum communication (1904.10797v2)

Published 24 Apr 2019 in quant-ph, cs.LG, and stat.ML

Abstract: Machine learning can help us in solving problems in the context big data analysis and classification, as well as in playing complex games such as Go. But can it also be used to find novel protocols and algorithms for applications such as large-scale quantum communication? Here we show that machine learning can be used to identify central quantum protocols, including teleportation, entanglement purification and the quantum repeater. These schemes are of importance in long-distance quantum communication, and their discovery has shaped the field of quantum information processing. However, the usefulness of learning agents goes beyond the mere re-production of known protocols; the same approach allows one to find improved solutions to long-distance communication problems, in particular when dealing with asymmetric situations where channel noise and segment distance are non-uniform. Our findings are based on the use of projective simulation, a model of a learning agent that combines reinforcement learning and decision making in a physically motivated framework. The learning agent is provided with a universal gate set, and the desired task is specified via a reward scheme. From a technical perspective, the learning agent has to deal with stochastic environments and reactions. We utilize an idea reminiscent of hierarchical skill acquisition, where solutions to sub-problems are learned and re-used in the overall scheme. This is of particular importance in the development of long-distance communication schemes, and opens the way for using machine learning in the design and implementation of quantum networks.

Citations (81)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.