Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Polynomial-Time Approximation Scheme for Facility Location on Planar Graphs (1904.10680v1)

Published 24 Apr 2019 in cs.DS

Abstract: We consider the classic Facility Location problem on planar graphs (non-uniform, uncapacitated). Given an edge-weighted planar graph $G$, a set of clients $C\subseteq V(G)$, a set of facilities $F\subseteq V(G)$, and opening costs $\mathsf{open} \colon F \to \mathbb{R}{\geq 0}$, the goal is to find a subset $D$ of $F$ that minimizes $\sum{c \in C} \min_{f \in D} \mathrm{dist}(c,f) + \sum_{f \in D} \mathsf{open}(f)$. The Facility Location problem remains one of the most classic and fundamental optimization problem for which it is not known whether it admits a polynomial-time approximation scheme (PTAS) on planar graphs despite significant effort for obtaining one. We solve this open problem by giving an algorithm that for any $\varepsilon>0$, computes a solution of cost at most $(1+\varepsilon)$ times the optimum in time $n{2{O(\varepsilon{-2} \log (1/\varepsilon))}}$.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube