Papers
Topics
Authors
Recent
2000 character limit reached

Autonomous Voltage Control for Grid Operation Using Deep Reinforcement Learning (1904.10597v1)

Published 24 Apr 2019 in cs.SY and cs.LG

Abstract: Modern power grids are experiencing grand challenges caused by the stochastic and dynamic nature of growing renewable energy and demand response. Traditional theoretical assumptions and operational rules may be violated, which are difficult to be adapted by existing control systems due to the lack of computational power and accurate grid models for use in real time, leading to growing concerns in the secure and economic operation of the power grid. Existing operational control actions are typically determined offline, which are less optimized. This paper presents a novel paradigm, Grid Mind, for autonomous grid operational controls using deep reinforcement learning. The proposed AI agent for voltage control can learn its control policy through interactions with massive offline simulations, and adapts its behavior to new changes including not only load/generation variations but also topological changes. A properly trained agent is tested on the IEEE 14-bus system with tens of thousands of scenarios, and promising performance is demonstrated in applying autonomous voltage controls for secure grid operation.

Citations (84)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.