Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Understanding the efficacy, reliability and resiliency of computer vision techniques for malware detection and future research directions (1904.10504v1)

Published 3 Apr 2019 in cs.CR, cs.CV, and cs.LG

Abstract: My research lies in the intersection of security and machine learning. This overview summarizes one component of my research: combining computer vision with malware exploit detection for enhanced security solutions. I will present the perspectives of efficacy, reliability and resiliency to formulate threat detection as computer vision problems and develop state-of-the-art image-based malware classification. Representing malware binary as images provides a direct visualization of data samples, reduces the efforts for feature extraction, and consumes the whole binary for holistic structural analysis. Employing transfer learning of deep neural networks effective for large scale image classification to malware classification demonstrates superior classification efficacy compared with classical machine learning algorithms. To enhance reliability of these vision-based malware detectors, interpretation frameworks can be constructed on the malware visual representations and useful for extracting faithful explanation, so that security practitioners have confidence in the model before deployment. In cyber-security applications, we should always assume that a malware writer constantly modifies code to bypass detection. Addressing the resiliency of the malware detectors is equivalently important as efficacy and reliability. Via understanding the attack surfaces of machine learning models used for malware detection, we can greatly improve the robustness of the algorithms to combat malware adversaries in the wild. Finally I will discuss future research directions worth pursuing in this research community.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)