Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Android Malicious Application Classification Using Clustering (1904.10142v1)

Published 21 Apr 2019 in cs.CR and cs.LG

Abstract: Android malware have been growing at an exponential pace and becomes a serious threat to mobile users. It appears that most of the anti-malware still relies on the signature-based detection system which is generally slow and often not able to detect advanced obfuscated malware. Hence time-to-time various authors have proposed different machine learning solutions to identify sophisticated malware. However, it appears that detection accuracy can be improved by using the clustering method. Therefore in this paper, we propose a novel scalable and effective clustering method to improve the detection accuracy of the malicious android application and obtained a better overall accuracy (98.34%) by random forest classifier compared to regular method, i.e., taking the data altogether to detect the malware. However, as far as true positive and true negative are concerned, by clustering method, true positive is best obtained by decision tree (97.59%) and true negative by support vector machine (99.96%) which is the almost same result obtained by the random forest true positive (97.30%) and true negative (99.38%) respectively. The reason that overall accuracy of random forest is high because the true positive of support vector machine and true negative of the decision tree is significantly less than the random forest.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube