Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 138 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Learning to Cache With No Regrets (1904.09849v1)

Published 22 Apr 2019 in cs.NI

Abstract: This paper introduces a novel caching analysis that, contrary to prior work, makes no modeling assumptions for the file request sequence. We cast the caching problem in the framework of Online Linear Optimization (OLO), and introduce a class of minimum regret caching policies, which minimize the losses with respect to the best static configuration in hindsight when the request model is unknown. These policies are very important since they are robust to popularity deviations in the sense that they learn to adjust their caching decisions when the popularity model changes. We first prove a novel lower bound for the regret of any caching policy, improving existing OLO bounds for our setting. Then we show that the Online Gradient Ascent (OGA) policy guarantees a regret that matches the lower bound, hence it is universally optimal. Finally, we shift our attention to a network of caches arranged to form a bipartite graph, and show that the Bipartite Subgradient Algorithm (BSA) has no regret

Citations (70)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.