Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Detecting retail products in situ using CNN without human effort labeling (1904.09781v1)

Published 22 Apr 2019 in cs.CV

Abstract: CNN is a powerful tool for many computer vision tasks, achieving much better result than traditional methods. Since CNN has a very large capacity, training such a neural network often requires many data, but it is often expensive to obtain labeled images in real practice, especially for object detection, where collecting bounding box of every object in training set requires many human efforts. This is the case in detection of retail products where there can be many different categories. In this paper, we focus on applying CNN to detect 324-categories products in situ, while requiring no extra effort of labeling bounding box for any image. Our approach is based on an algorithm that extracts bounding box from in-vitro dataset and an algorithm to simulate occlusion. We have successfully shown the effectiveness and usefulness of our methods to build up a Faster RCNN detection model. Similar idea is also applicable in other scenarios.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.