Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Scheduling to Approximate Minimization Objectives on Identical Machines (1904.09667v1)

Published 21 Apr 2019 in cs.DS

Abstract: This paper considers scheduling on identical machines. The scheduling objective considered in this paper generalizes most scheduling minimization problems. In the problem, there are $n$ jobs and each job $j$ is associated with a monotonically increasing function $g_j$. The goal is to design a schedule that minimizes $\sum_{j \in [n]} g_{j}(C_j)$ where $C_j$ is the completion time of job $j$ in the schedule. An $O(1)$-approximation is known for the single machine case. On multiple machines, this paper shows that if the scheduler is required to be either non-migratory or non-preemptive then any algorithm has an unbounded approximation ratio. Using preemption and migration, this paper gives a $O(\log \log nP)$-approximation on multiple machines, the first result on multiple machines. These results imply the first non-trivial positive results for several special cases of the problem considered, such as throughput minimization and tardiness. Natural linear programs known for the problem have a poor integrality gap. The results are obtained by strengthening a natural linear program for the problem with a set of covering inequalities we call job cover inequalities. This linear program is rounded to an integral solution by building on quasi-uniform sampling and rounding techniques.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.