Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A convex relaxation to compute the nearest structured rank deficient matrix (1904.09661v2)

Published 21 Apr 2019 in math.OC and cs.NA

Abstract: Given an affine space of matrices $\mathcal{L}$ and a matrix $\Theta\in \mathcal{L}$, consider the problem of computing the closest rank deficient matrix to $\Theta$ on $\mathcal{L}$ with respect to the Frobenius norm. This is a nonconvex problem with several applications in control theory, computer algebra, and computer vision. We introduce a novel semidefinite programming (SDP) relaxation, and prove that it always gives the global minimizer of the nonconvex problem in the low noise regime, i.e., when $\Theta$ is close to be rank deficient. Our SDP is the first convex relaxation for this problem with provable guarantees. We evaluate the performance of our SDP relaxation in examples from system identification, approximate GCD, triangulation, and camera resectioning. Our relaxation reliably obtains the global minimizer under non-adversarial noise, and its noise tolerance is significantly better than state of the art methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Diego Cifuentes (21 papers)
Citations (16)

Summary

We haven't generated a summary for this paper yet.