Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A convex relaxation to compute the nearest structured rank deficient matrix (1904.09661v2)

Published 21 Apr 2019 in math.OC and cs.NA

Abstract: Given an affine space of matrices $\mathcal{L}$ and a matrix $\Theta\in \mathcal{L}$, consider the problem of computing the closest rank deficient matrix to $\Theta$ on $\mathcal{L}$ with respect to the Frobenius norm. This is a nonconvex problem with several applications in control theory, computer algebra, and computer vision. We introduce a novel semidefinite programming (SDP) relaxation, and prove that it always gives the global minimizer of the nonconvex problem in the low noise regime, i.e., when $\Theta$ is close to be rank deficient. Our SDP is the first convex relaxation for this problem with provable guarantees. We evaluate the performance of our SDP relaxation in examples from system identification, approximate GCD, triangulation, and camera resectioning. Our relaxation reliably obtains the global minimizer under non-adversarial noise, and its noise tolerance is significantly better than state of the art methods.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)