Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Storing and Querying Large-Scale Spatio-Temporal Graphs with High-Throughput Edge Insertions (1904.09610v2)

Published 21 Apr 2019 in cs.DC and cs.DB

Abstract: Real-world graphs often contain spatio-temporal information and evolve over time. Compared with static graphs, spatio-temporal graphs have very different characteristics, presenting more significant challenges in data volume, data velocity, and query processing. In this paper, we describe three representative applications to understand the features of spatio-temporal graphs. Based on the commonalities of the applications, we define a formal spatio-temporal graph model, where a graph consists of location vertices, object vertices, and event edges. Then we discuss a set of design goals to meet the requirements of the applications: (i) supporting up to 10 billion object vertices, 10 million location vertices, and 100 trillion edges in the graph, (ii) supporting up to 1 trillion new edges that are streamed in daily, and (iii) minimizing cross-machine communication for query processing. We propose and evaluate PAST, a framework for efficient PArtitioning and query processing of Spatio-Temporal graphs. Experimental results show that PAST successfully achieves the above goals. It improves query performance by orders of magnitude compared with state-of-the-art solutions, including JanusGraph, Greenplum, Spark and ST-Hadoop.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube