Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A mechanism for balancing accuracy and scope in cross-machine black-box GPU performance modeling (1904.09538v3)

Published 21 Apr 2019 in cs.PF and cs.DC

Abstract: The ability to model, analyze, and predict execution time of computations is an important building block supporting numerous efforts, such as load balancing, performance optimization, and automated performance tuning for high performance, parallel applications. In today's increasingly heterogeneous computing environment, this task must be accomplished efficiently across multiple architectures, including massively parallel coprocessors like GPUs. To address this challenge, we present an approach for constructing customizable, cross-machine performance models for GPU kernels, including a mechanism to automatically and symbolically gather performance-relevant kernel operation counts, a tool for formulating mathematical models using these counts, and a customizable parameterized collection of benchmark kernels used to calibrate models to GPUs in a black-box fashion. Our approach empowers a user to manage trade-offs between model accuracy, evaluation speed, and generalizability. A user can define a model and customize the calibration process, making it as simple or complex as desired, and as application-targeted or general as desired. To evaluate our approach, we demonstrate both linear and nonlinear models; each example models execution times for multiple variants of a particular computation: two matrix multiplication variants, four Discontinuous Galerkin (DG) differentiation operation variants, and two 2-D five-point finite difference stencil variants. For each variant, we present accuracy results on GPUs from multiple vendors and hardware generations. We view this customizable approach as a response to a central question in GPU performance modeling: how can we model GPU performance in a cost-explanatory fashion while maintaining accuracy, evaluation speed, portability, and ease of use, an attribute we believe precludes manual collection of kernel or hardware statistics.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.