Papers
Topics
Authors
Recent
Search
2000 character limit reached

Weakly-Supervised Concept-based Adversarial Learning for Cross-lingual Word Embeddings

Published 20 Apr 2019 in cs.CL | (1904.09446v1)

Abstract: Distributed representations of words which map each word to a continuous vector have proven useful in capturing important linguistic information not only in a single language but also across different languages. Current unsupervised adversarial approaches show that it is possible to build a mapping matrix that align two sets of monolingual word embeddings together without high quality parallel data such as a dictionary or a sentence-aligned corpus. However, without post refinement, the performance of these methods' preliminary mapping is not good, leading to poor performance for typologically distant languages. In this paper, we propose a weakly-supervised adversarial training method to overcome this limitation, based on the intuition that mapping across languages is better done at the concept level than at the word level. We propose a concept-based adversarial training method which for most languages improves the performance of previous unsupervised adversarial methods, especially for typologically distant language pairs.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.