Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Performance and Resilience of Cyber-Physical Control Systems with Reactive Attack Mitigation (1904.09445v1)

Published 20 Apr 2019 in cs.CR, cs.IT, cs.SY, and math.IT

Abstract: This paper studies the performance and resilience of a linear cyber-physical control system (CPCS) with attack detection and reactive attack mitigation in the context of power grids. It addresses the problem of deriving an optimal sequence of false data injection attacks that maximizes the state estimation error of the power system. The results provide basic understanding about the limit of the attack impact. The design of the optimal attack is based on a Markov decision process (MDP) formulation, which is solved efficiently using the value iteration method. We apply the proposed framework to the voltage control system of power grids and run extensive simulations using PowerWorld. The results show that our framework can accurately characterize the maximum state estimation errors caused by an attacker who carefully designs the attack sequence to strike a balance between the attack magnitude and stealthiness, due to the simultaneous presence of attack detection and mitigation. Moreover, based on the proposed framework, we analyze the impact of false positives and negatives in detecting attacks on the system performance. The results are important for the system defenders in the joint design of attack detection and mitigation to reduce the impact of these attack detection errors.Finally, as MDP solutions are not scalable for high-dimensional systems, we apply Q-learning with linear and non-linear (neural networks based) function approximators to solve the attacker's problem in these systems and compare their performances.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.