Papers
Topics
Authors
Recent
2000 character limit reached

On the weak convergence rate of an exponential Euler scheme for SDEs governed by coefficients with superlinear growth (1904.09441v3)

Published 20 Apr 2019 in math.PR, cs.NA, and math.NA

Abstract: We consider the problem of the approximation of the solution of a one-dimensional SDE with non-globally Lipschitz drift and diffusion coefficients behaving as $x\alpha$, with $\alpha>1$. We propose an (semi-explicit) exponential-Euler scheme and study its convergence through its weak approximation error. To this aim, we analyze the $C{1,4}$ regularity of the solution of the associated backward Kolmogorov PDE using its Feynman-Kac representation and the flow derivative of the involved processes. From this, under some suitable hypotheses on the parameters of the model ensuring the control of its positive moments, we recover a rate of weak convergence of order one for the proposed exponential Euler scheme. Finally, numerical experiments are shown in order to support and complement our theoretical result.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.