Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

On the weak convergence rate of an exponential Euler scheme for SDEs governed by coefficients with superlinear growth (1904.09441v3)

Published 20 Apr 2019 in math.PR, cs.NA, and math.NA

Abstract: We consider the problem of the approximation of the solution of a one-dimensional SDE with non-globally Lipschitz drift and diffusion coefficients behaving as $x\alpha$, with $\alpha>1$. We propose an (semi-explicit) exponential-Euler scheme and study its convergence through its weak approximation error. To this aim, we analyze the $C{1,4}$ regularity of the solution of the associated backward Kolmogorov PDE using its Feynman-Kac representation and the flow derivative of the involved processes. From this, under some suitable hypotheses on the parameters of the model ensuring the control of its positive moments, we recover a rate of weak convergence of order one for the proposed exponential Euler scheme. Finally, numerical experiments are shown in order to support and complement our theoretical result.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.