Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the weak convergence rate of an exponential Euler scheme for SDEs governed by coefficients with superlinear growth (1904.09441v3)

Published 20 Apr 2019 in math.PR, cs.NA, and math.NA

Abstract: We consider the problem of the approximation of the solution of a one-dimensional SDE with non-globally Lipschitz drift and diffusion coefficients behaving as $x\alpha$, with $\alpha>1$. We propose an (semi-explicit) exponential-Euler scheme and study its convergence through its weak approximation error. To this aim, we analyze the $C{1,4}$ regularity of the solution of the associated backward Kolmogorov PDE using its Feynman-Kac representation and the flow derivative of the involved processes. From this, under some suitable hypotheses on the parameters of the model ensuring the control of its positive moments, we recover a rate of weak convergence of order one for the proposed exponential Euler scheme. Finally, numerical experiments are shown in order to support and complement our theoretical result.

Citations (17)

Summary

We haven't generated a summary for this paper yet.