Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Distributed generation of privacy preserving data with user customization (1904.09415v1)

Published 20 Apr 2019 in cs.LG, cs.CY, and stat.ML

Abstract: Distributed devices such as mobile phones can produce and store large amounts of data that can enhance machine learning models; however, this data may contain private information specific to the data owner that prevents the release of the data. We wish to reduce the correlation between user-specific private information and data while maintaining the useful information. Rather than learning a large model to achieve privatization from end to end, we introduce a decoupling of the creation of a latent representation and the privatization of data that allows user-specific privatization to occur in a distributed setting with limited computation and minimal disturbance on the utility of the data. We leverage a Variational Autoencoder (VAE) to create a compact latent representation of the data; however, the VAE remains fixed for all devices and all possible private labels. We then train a small generative filter to perturb the latent representation based on individual preferences regarding the private and utility information. The small filter is trained by utilizing a GAN-type robust optimization that can take place on a distributed device. We conduct experiments on three popular datasets: MNIST, UCI-Adult, and CelebA, and give a thorough evaluation including visualizing the geometry of the latent embeddings and estimating the empirical mutual information to show the effectiveness of our approach.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.