Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Super-resolution of near-colliding point sources (1904.09186v2)

Published 19 Apr 2019 in math.NA and cs.NA

Abstract: We consider the problem of stable recovery of sparse signals of the form $$F(x)=\sum_{j=1}d a_j\delta(x-x_j),\quad x_j\in\mathbb{R},\;a_j\in\mathbb{C}, $$ from their spectral measurements, known in a bandwidth $\Omega$ with absolute error not exceeding $\epsilon>0$. We consider the case when at most $p\le d$ nodes ${x_j}$ of $F$ form a cluster whose extent is smaller than the Rayleigh limit ${1\over\Omega}$, while the rest of the nodes are well separated. Provided that $\epsilon \lessapprox SRF{-2p+1}$, where $SRF=(\Omega\Delta){-1}$ and $\Delta$ is the minimal separation between the nodes, we show that the minimax error rate for reconstruction of the cluster nodes is of order ${1\over\Omega}SRF{2p-1}\epsilon$, while for recovering the corresponding amplitudes ${a_j}$ the rate is of the order $SRF{2p-1}\epsilon$. Moreover, the corresponding minimax rates for the recovery of the non-clustered nodes and amplitudes are ${\epsilon\over\Omega}$ and $\epsilon$, respectively. These results suggest that stable super-resolution is possible in much more general situations than previously thought. Our numerical experiments show that the well-known Matrix Pencil method achieves the above accuracy bounds.

Citations (62)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.