Papers
Topics
Authors
Recent
2000 character limit reached

Efficient Blind Deblurring under High Noise Levels (1904.09154v2)

Published 19 Apr 2019 in cs.CV

Abstract: The goal of blind image deblurring is to recover a sharp image from a motion blurred one without knowing the camera motion. Current state-of-the-art methods have a remarkably good performance on images with no noise or very low noise levels. However, the noiseless assumption is not realistic considering that low light conditions are the main reason for the presence of motion blur due to requiring longer exposure times. In fact, motion blur and high to moderate noise often appear together. Most works approach this problem by first estimating the blur kernel $k$ and then deconvolving the noisy blurred image. In this work, we first show that current state-of-the-art kernel estimation methods based on the $\ell_0$ gradient prior can be adapted to handle high noise levels while keeping their efficiency. Then, we show that a fast non-blind deconvolution method can be significantly improved by first denoising the blurry image. The proposed approach yields results that are equivalent to those obtained with much more computationally demanding methods.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.