Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 186 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Efficient Blind Deblurring under High Noise Levels (1904.09154v2)

Published 19 Apr 2019 in cs.CV

Abstract: The goal of blind image deblurring is to recover a sharp image from a motion blurred one without knowing the camera motion. Current state-of-the-art methods have a remarkably good performance on images with no noise or very low noise levels. However, the noiseless assumption is not realistic considering that low light conditions are the main reason for the presence of motion blur due to requiring longer exposure times. In fact, motion blur and high to moderate noise often appear together. Most works approach this problem by first estimating the blur kernel $k$ and then deconvolving the noisy blurred image. In this work, we first show that current state-of-the-art kernel estimation methods based on the $\ell_0$ gradient prior can be adapted to handle high noise levels while keeping their efficiency. Then, we show that a fast non-blind deconvolution method can be significantly improved by first denoising the blurry image. The proposed approach yields results that are equivalent to those obtained with much more computationally demanding methods.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.