Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Direct Synthesis of Iterative Algorithms With Bounds on Achievable Worst-Case Convergence Rate (1904.09046v2)

Published 19 Apr 2019 in cs.SY and math.OC

Abstract: Iterative first-order methods such as gradient descent and its variants are widely used for solving optimization and machine learning problems. There has been recent interest in analytic or numerically efficient methods for computing worst-case performance bounds for such algorithms, for example over the class of strongly convex loss functions. A popular approach is to assume the algorithm has a fixed size (fixed dimension, or memory) and that its structure is parameterized by one or two hyperparameters, for example a learning rate and a momentum parameter. Then, a Lyapunov function is sought to certify robust stability and subsequent optimization can be performed to find optimal hyperparameter tunings. In the present work, we instead fix the constraints that characterize the loss function and apply techniques from robust control synthesis to directly search over algorithms. This approach yields stronger results than those previously available, since the bounds produced hold over algorithms with an arbitrary, but finite, amount of memory rather than just holding for algorithms with a prescribed structure.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.