Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Class specific or shared? A cascaded dictionary learning framework for image classification (1904.08928v2)

Published 17 Apr 2019 in cs.CV

Abstract: Dictionary learning methods can be split into: i) class specific dictionary learning ii) class shared dictionary learning. The difference between the two categories is how to use discriminative information. With the first category, samples of different classes are mapped into different subspaces, which leads to some redundancy with the class specific base vectors. While for the second category, the samples in each specific class can not be described accurately. In this paper, we first propose a novel class shared dictionary learning method named label embedded dictionary learning (LEDL). It is the improvement based on LCKSVD, which is easier to find out the optimal solution. Then we propose a novel framework named cascaded dictionary learning framework (CDLF) to combine the specific dictionary learning with shared dictionary learning to describe the feature to boost the performance of classification sufficiently. Extensive experimental results on six benchmark datasets illustrate that our methods are capable of achieving superior performance compared to several state-of-art classification algorithms.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.