Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 166 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Learning a Controller Fusion Network by Online Trajectory Filtering for Vision-based UAV Racing (1904.08801v1)

Published 18 Apr 2019 in cs.RO, cs.CV, and cs.LG

Abstract: Autonomous UAV racing has recently emerged as an interesting research problem. The dream is to beat humans in this new fast-paced sport. A common approach is to learn an end-to-end policy that directly predicts controls from raw images by imitating an expert. However, such a policy is limited by the expert it imitates and scaling to other environments and vehicle dynamics is difficult. One approach to overcome the drawbacks of an end-to-end policy is to train a network only on the perception task and handle control with a PID or MPC controller. However, a single controller must be extensively tuned and cannot usually cover the whole state space. In this paper, we propose learning an optimized controller using a DNN that fuses multiple controllers. The network learns a robust controller with online trajectory filtering, which suppresses noisy trajectories and imperfections of individual controllers. The result is a network that is able to learn a good fusion of filtered trajectories from different controllers leading to significant improvements in overall performance. We compare our trained network to controllers it has learned from, end-to-end baselines and human pilots in a realistic simulation; our network beats all baselines in extensive experiments and approaches the performance of a professional human pilot. A video summarizing this work is available at https://youtu.be/hGKlE5X9Z5U

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.