Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 63 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Online Matching with General Arrivals (1904.08255v1)

Published 17 Apr 2019 in cs.DS

Abstract: The online matching problem was introduced by Karp, Vazirani and Vazirani nearly three decades ago. In that seminal work, they studied this problem in bipartite graphs with vertices arriving only on one side, and presented optimal deterministic and randomized algorithms for this setting. In comparison, more general arrival models, such as edge arrivals and general vertex arrivals, have proven more challenging and positive results are known only for various relaxations of the problem. In particular, even the basic question of whether randomization allows one to beat the trivially-optimal deterministic competitive ratio of $\frac{1}{2}$ for either of these models was open. In this paper, we resolve this question for both these natural arrival models, and show the following. 1. For edge arrivals, randomization does not help --- no randomized algorithm is better than $\frac{1}{2}$ competitive. 2. For general vertex arrivals, randomization helps --- there exists a randomized $(\frac{1}{2}+\Omega(1))$-competitive online matching algorithm.

Citations (66)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.