Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian policy selection using active inference (1904.08149v2)

Published 17 Apr 2019 in cs.LG, cs.AI, and cs.NE

Abstract: Learning to take actions based on observations is a core requirement for artificial agents to be able to be successful and robust at their task. Reinforcement Learning (RL) is a well-known technique for learning such policies. However, current RL algorithms often have to deal with reward shaping, have difficulties generalizing to other environments and are most often sample inefficient. In this paper, we explore active inference and the free energy principle, a normative theory from neuroscience that explains how self-organizing biological systems operate by maintaining a model of the world and casting action selection as an inference problem. We apply this concept to a typical problem known to the RL community, the mountain car problem, and show how active inference encompasses both RL and learning from demonstrations.

Citations (31)

Summary

We haven't generated a summary for this paper yet.