Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Complementary Fusion of Multi-Features and Multi-Modalities in Sentiment Analysis (1904.08138v5)

Published 17 Apr 2019 in cs.CL, cs.SD, and eess.AS

Abstract: Sentiment analysis, mostly based on text, has been rapidly developing in the last decade and has attracted widespread attention in both academia and industry. However, the information in the real world usually comes from multiple modalities, such as audio and text. Therefore, in this paper, based on audio and text, we consider the task of multimodal sentiment analysis and propose a novel fusion strategy including both multi-feature fusion and multi-modality fusion to improve the accuracy of audio-text sentiment analysis. We call it the DFF-ATMF (Deep Feature Fusion - Audio and Text Modality Fusion) model, which consists of two parallel branches, the audio modality based branch and the text modality based branch. Its core mechanisms are the fusion of multiple feature vectors and multiple modality attention. Experiments on the CMU-MOSI dataset and the recently released CMU-MOSEI dataset, both collected from YouTube for sentiment analysis, show the very competitive results of our DFF-ATMF model. Furthermore, by virtue of attention weight distribution heatmaps, we also demonstrate the deep features learned by using DFF-ATMF are complementary to each other and robust. Surprisingly, DFF-ATMF also achieves new state-of-the-art results on the IEMOCAP dataset, indicating that the proposed fusion strategy also has a good generalization ability for multimodal emotion recognition.

Citations (71)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube