Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Rogue-Gym: A New Challenge for Generalization in Reinforcement Learning (1904.08129v2)

Published 17 Apr 2019 in cs.LG and stat.ML

Abstract: In this paper, we propose Rogue-Gym, a simple and classic style roguelike game built for evaluating generalization in reinforcement learning (RL). Combined with the recent progress of deep neural networks, RL has successfully trained human-level agents without human knowledge in many games such as those for Atari 2600. However, it has been pointed out that agents trained with RL methods often overfit the training environment, and they work poorly in slightly different environments. To investigate this problem, some research environments with procedural content generation have been proposed. Following these studies, we propose the use of roguelikes as a benchmark for evaluating the generalization ability of RL agents. In our Rogue-Gym, agents need to explore dungeons that are structured differently each time they start a new game. Thanks to the very diverse structures of the dungeons, we believe that the generalization benchmark of Rogue-Gym is sufficiently fair. In our experiments, we evaluate a standard reinforcement learning method, PPO, with and without enhancements for generalization. The results show that some enhancements believed to be effective fail to mitigate the overfitting in Rogue-Gym, although others slightly improve the generalization ability.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.