The Euler-Maruyama Scheme for SDEs with Irregular Drift: Convergence Rates via Reduction to a Quadrature Problem (1904.07784v3)
Abstract: We study the strong convergence order of the Euler-Maruyama scheme for scalar stochastic differential equations with additive noise and irregular drift. We provide a general framework for the error analysis by reducing it to a weighted quadrature problem for irregular functions of Brownian motion. Assuming Sobolev-Slobodeckij-type regularity of order $\kappa \in (0,1)$ for the non-smooth part of the drift, our analysis of the quadrature problem yields the convergence order $\min{3/4,(1+\kappa)/2}-\epsilon$ for the equidistant Euler-Maruyama scheme (for arbitrarily small $\epsilon>0$). The cut-off of the convergence order at $3/4$ can be overcome by using a suitable non-equidistant discretization, which yields the strong convergence order of $(1+\kappa)/2-\epsilon$ for the corresponding Euler-Maruyama scheme.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.