Matrix approach to synchronizing automata (1904.07694v4)
Abstract: A word $w$ of letters on edges of underlying graph $\Gamma$ of deterministic finite automaton (DFA) is called synchronizing if $w$ sends all states of the automaton to a unique state. J. \v{C}erny discovered in 1964 a sequence of $n$-state complete DFA possessing a minimal synchronizing word of length $(n-1)2$. The hypothesis, well known today as \v{C}erny conjecture, claims that $(n-1)2$ is a precise upper bound on the length of such a word over alphabet $\Sigma$ of letters on edges of $\Gamma$ for every complete $n$-state DFA. The hypothesis was formulated distinctly in 1966 by Starke. A special classes of matrices induced by words in the alphabet of labels on edges of the underlying graph of DFA are used for the study of synchronizing automata.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.